Options for Managing Per and Polyfluorinated Substances (PFAS) in Landfill Leachate, Fire Water and other Wastewaters

Environmental Federation of Oklahoma

Midwest City, OK

October 8, 2019

Presented by Frank Marine, Texas Molecular

Agenda

- Regulatory Comments
- Sources of PFAS Liquids
- Options to Manage PFAS Liquids
- Options to Manage PFAS Treatment Residuals
- Considerations for Selecting an Option
- References
- Questions

Regulatory Comments

- Regulations are changing and can be retroactive.
 - » Regulations started with PFOA and PFOS; Other PFAS compounds are now being considered
 - » EPA Health Advisory of 70 ppt was >200 about 10 years ago; There is no certainty what it will be in the future and what PFAS compounds will be included
 - » Use of PFAS in mist suppression in Chromic Acid plating was encouraged/mandated; Now these products are banned from use; These sites now have legacy contamination clean-up issues
 - » Industry eliminated production of C8 PFAS and went to "safer" C6 PFAS. Some of these compounds are coming under scrutiny and actual regulation in many jurisdictions
- PFAS found in drinking water is driving State regulations and increased level of testing across the country
- Although the EPA is not likely to list PFAS as a Hazardous Waste, they are more likely to be added to Hazardous Substances list under CERCLA, adding reporting and structure to legacy clean up
- Unregulated Contaminant Monitoring Rule (UCMR) is expected to add more PFAS compounds when finalized

Sources of PFAS Liquids

- Chemical production at facilities manufacturing fluorinated compounds using PFAS or PFAS intermediates
- Secondary facilities that use compounds with PFAS in the products like coated paper mills, textile plants, lubricants, cosmetics, etc.
- Landfill leachate from Non-Hazardous Subtitle D landfills. Potential high concentrations from years of taking products with PFOA, PFOS, and other PFAS
- Facilities that make, use, or test AFFF fire fighting foams; Users include airports, US Military, airlines, chemical plants, storage terminals, and petroleum refineries; Contamination potential in ground, groundwater, and water collected after use
- Legacy contamination from sites using PFAS including plating facilities

Options to Manage PFAS Liquids

- Ion Exchange Resin (IX)
- Granular Activated Carbon (GAC)
- Reverse Osmosis (RO)
- Deepwell Injection
- Landfills
- Other Technologies

Options to Manage PFAS Liquids Ion Exchange Resin

Advantages

- Fully demonstrated technology with targeted resins for PFAS
- Generally higher adsorption capacity than GAC
- Scalable, capable of managing large water volumes
- Can be used in combination with GAC

- Regeneration fluid or single use requires off-site disposal or incineration
- Multiple species of contaminents can reduce efficiency
- May not remove all PFAS compounds
- How clean is "clean"

Options to Manage PFAS Liquids Granular Activated Carbon (GAC)

Advantages

- Demonstrated option for PFAS removal
- Better for PFAS with greater than 6 carbon atoms
- Scalable, can manage large volumes of water
- Source of GAC is important
- Can be used with other technologies

- Break through risk
- Requires regeneration or incineration of spent GAC
- Multiple species can reduce efficiency of GAC

Options to Manage PFAS Liquids Reverse Osmosis (RO)

Advantages

- A developed technology to remove PFAS from water
- Scalable, can manage large volumes of water
- May be better for 6 carbon chain PFAS

- High concentration RO reject stream may require off-site treatment
- Non-target compounds may increase corrosivity

Options to Manage PFAS Liquids Hazardous Underground Injection

Advantages

- No discharges to water
- Meet potential regulation as a hazardous waste or hazardous substance today
- Constituent level and variety are generally not an issue
- Large capacity
- No CAPEX
- Lower cost vs. incineration

- Transportation cost to disposal site
- Potentially cost effective in up to 5 to 10 million gallons per year
- Water properties should be amenable to underground injection

Options to Manage PFAS Liquids Landfill

Advantages

- Locations near generating sites could result in overall lower off-site cost
- Risk to PFAS in landfill leachate
- Limits on volume of water waste
- Risk of future regulation

Options to Manage PFAS Liquids Other Options

- Biochar- Partially demonstrated technology
- Other absorption technologies- Partially developed
- Precipitation, Flocculation, Coagulation- Lab/bench scale testing
- Nanofiltration- Partially developed
- Redox Manipulation- Lab/bench scale testing
- "Necessity is the Mother of Invention" New technologies are being developed at a number of universities and private companies

Options to Manage PFAS Liquids Treatment Residues

- Ion Exchange Resins
 - » Single Use- Incineration in RCRA Incinerator
 - » Regeneration Residue- Incineration in a RCRA Incinerator or injection in an Underground Injection facility
- Granular Activated Carbon
 - » Regeneration
 - » Single Use- Incineration in a RCRA Incinerator
- Reverse Osmosis
 - » RO Reject Stream- Incineration in RCRA incinerator or injection in an Underground Injection facility

Considerations for Selecting an Option

- Volumes:
 - > 5 million gallons/year generally favor on-site options
 - < 5 million gallons/year or discrete projects; Off-site options may become competitive</p>
- Distance to off-site options. Is truck or rail available
- Concentrations:
 - High concentrations; Adds to cost for on-site options
- Segregate sources of high PFAS to utilize multiple strategies
- Contaminents:
 - Multiple or variable contaminant levels can add to cost of on-site options.
 - Technology may not be effective on all types of PFAS
- Risk of Future Regulations
 - Does the technology meet potential future regulations
- Discharge Risk:
 - Off-site options are considered on a cost/benefit basis

References

- Interstate Technology Regulatory Council, ITRC. https://www.itrcweb.org/wpcontent/uploads/2018/03/pfas_fact_sheet_remediation_3_13_18.pdf
- National Association for Surface Finishing, NASF <u>https://nasf.org/pfas/pfas-in-surface-finishing/</u>
- USEPA. EPA's Per- and Polyfluorinated Substances (PFAS) Action Plan, EPA 823R18004, February 2019
- Association of State Drinking Water Administrators (ASDWA) www.asdwa.org/PFAS

